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The calculation of dynamical elastic diffuse electron scattering from a crystal containing a point defect 
or dislocation may require prohibitively large amounts of computing time. Two approximations are 
described which greatly reduce the computer time required for these calculations, and so allow the simu- 
lation of electron-microscope images of defects at atomic resolution. The diffuse scattering expected from 
microdiffraction experiments can also be predicted in this way. 

1. Introduction 

Recent instrumental developments in high-resolution 
transmission electron microscopy have led to the pro- 
duction of a generation of instruments capable of 
producing high-quality images showing a point reso- 
lution of perhaps 3.5 A and, in favorable cases, lattice 
resolution better than 1.0 A. Image detail from metal- 
lurgical specimens on this scale cannot be interpreted 
with the conventional theory of diffraction contrast 
from imperfect crystals based on the column approxi- 
mation (see, for example, Hirsch, Howie, Nicholson, 
Pashley & Whelan, 1965). The most recent develop- 
ment of this theory, the weak-beam method, allows an 
interpretation of detail on electron micrographs down 
to perhaps 15 A. Despite the considerable success of 
diffraction contrast theory for the characterization 
of dislocations and the investigation of their inter- 
actions, much recent interest has centered on the 
development of theoretical methods to allow the 
fullest use of present-day instrumental capabilities. 
Rather than obtaining contrast from the defect strain 
field in a single-beam image as in conventional 
metallurgical microscopy, the aim is to use the methods 
of lattice imaging (Menter, 1956; Cockayne, Parsons & 
Hoelke, 1971; Iijima, 1975) and single-atom imaging 
(Hashimoto, Kumao, Hino, Yotsumoto & Ono, 1973) 
to expose the structure of the defect at high resolution. 
There is some hope that by matching computer- 

simulated trial structure images and diffraction patterns 
with experimental recordings, the detailed atomic 
structure of a defect may be revealed. The necessary 
experimental images and diffraction patterns can now 
be recordedJ under closely specified experimental 
conditions with, for the image, known values of 
defocus, spherical and chromatic aberration constants, 
incident-beam divergence and specimen orientation 
(see, for example, Krivanek, 1976). 

Experience in our laboratory has shown that the 
computer simulation of these high-resolution electron 
images requires very large amounts of computer time. 
For example, a recent 500-beam dynamical calcu- 
lation showing through-focus images from an inter- 
stitial defect in a lead film (thickness 80 A) required 10 
min computing time on a Univac II10-42 computer. 
This raises serious questions about the usefulness of 
image simulation as a tool for the structure analysis of 
defects. 

The purpose of this note is to outline two approxi- 
mations which can be made to reduce the amount of 
computing time required by use of the multislice 
method. Methods for calculating the coherent scattering 
from non-periodic specimens have been known for 
some time in X-ray diffraction (see, for example, 
Krivoglaz & Ryaboshapka, 1963); however, calcu- 
lations for electron scattering where dynamical 
scattering may be important are a more recent develop- 
ment (Grinton & Cowley, 1971 ; Cockayne, 1976). 
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2. Di f fuse  scattering under p lane -wave  i l lumination 

By use of the method of periodic continuation, a large 
superlattice containing the defect is constructed and the 
scattering calculation performed in the usual way with 
the superlattice treated as a single unit cell. This method 
of calculation, which gives the elastic diffuse scattering 
between Bragg reflections, should be clearly dis- 
tinguished from the so-called 'non-column approxi- 
mation' calculations which yield values of the scattered 
amplitude only in the directions of Bragg reflections. 
In order to avoid artifacts it is important that the 
implied periodic extension of this cell potential is 
smoothly connected at the cell edges (Lanczos, 1966). 
In addition, it must be borne in mind that these com- 
puted images are the images which would be obtained 
from a periodic array of defects and so may differ 
under certain experimental conditions (of focus, for 
example) from the image of an isolated defect. By 
making the superlattice cell sufficiently large, it is 
possible to make these differences negligible. For a one- 
dimensional superlattice of length X = naa o (% is the 
periodicity of the perfect crystal), the calculation 
produces sampled values of the elastic diffuse scattering 
at intervals u = 1/X = AO/2 with 0 the scattering angle. 
Bragg reflections occur at 0/2 = na/X = 1/%. Calcu- 
lations based on the multislice method allow the 
structure to be varied as a function of depth through 
the crystal. The N-beam iterative equation used is then 

gt"+'(h) = Z q/' (g) P(g) Q,, (h - g) (1) 
g 

with ~ ( g )  proportional to the amplitude of the Bragg 
reflection g emerging from the nth slice. More details of 
this equation can be found in Goodman & Moodie 
(1974) and Cowley (1975). Here P(g)is the propagator 

P(g) = e x p ( - 2 r d S g A z )  

with Az the slice thickness and Sg the excitation error 
for beam g (St~ is positive for a reflection inside the 
sphere). Here Q, (h)Az is proportional to the amount 
of new scattering generated in the slice in direction h. 
The scattering amplitudes Q,(h) have conventionally 
been taken to be the Fourier coefficients of 

~0"(r) = exp[-ia~0~,(r)l (2) 

where a = zr/2V0(rron-relativistic) and (pp(r) is a pro- 
jection through the slice potential taken in the direction 
of the crystal zone axis nearest the incident-beam 
direction. Here r, g and h are two-dimensional vectors 
in the plane to which this zone axis is normal. Equation 
(2) takes account of multiple scattering within the slice. 
Its first-order expansion, 

~ ' ( r )  = I - i a@(r)  

with Fourier coefficients 
m 

Q,(h) = - i a V " ( h ) A z  for h ~: 0 

= 1 - i a V " ( O )  Az f o r h = 0 ,  

gives the kinematic scattering amplitudes. Here V"(h) 
is a Fourier coefficient of the crystal potential for the 
nth_slice. For sufficiently thin slices (small Az), the use 
of Q,(h) in (1) in place of Q,(h) gives accurate results 
as pointed out by Lynch (1974), who described an 
efficient method of computing higher-order approxi- 
m_ations for Q,(h). The use of kinematic amplitudes 
Q,(h) has been investigated and found to give accurate 
results for light elements with Az taken equal to the 
thickness of a layer of atoms. The resulting time saving 
is greatest for specimens for which the atomic structure 
is not periodic in the beam direction, such as an inter- 
stitial defect or dislocation in certain orientations. The 
use of Q,(h) would then require two digital fast Fourier 
transforms at each slice in addition to the structure- 
factor calculation for each slice. For silicon, the 
Pendell6sung curves from a 25-beam calculation using 
the Q,(h) have been compared with the results of a 
conventional calculation [equation (1)]. At 100 kV 
incident electron energy, and with a slice thickness of 
2.33 A, the various dynamical extinction distances were 
found to agree to within less than 3% for a wide range 
of excitation errors. A disadvantage of the use of kine- 
matic scattering amplitudes is that, unlike the con- 
ventional multislice calculations, a unity sum of beam 
intensities does not indicate the inclusion of all reflec- 
tions of appreciable intensity. However, for many light- 
element defect structures of technological importance 
this approximation makes possible the simulation of 
two-dimensional electron images which would be un- 
realistically time-consuming otherwise. 

A second useful approximation in dynamical defect- 
image calculations is based on the neglect of double- 
diffuse scattering terms. Since these form by far the 
largest single group of terms in (I) for imperfect 
specimens, a considerable saving in computing time is 
possible. The bulk of the computing time used for a 
structure periodic in the beam direction is taken up in 
the evaluation of the convolution sums in (1). Writing 
(1) in one dimension with an artificial superlattice 
again of length X = n,~a o, we can distinguish four 
partial sums: 

q/"+ '(h) = ~ gt"(g) P(g) Q(h - g) 
g ¢ m n .  

( h -  g) ~e m n ,  

+ S, ¢ (g )  e(g) Q(h - g) 
g ¢ mna 

(h - g )  = m n .  

+ ~ q/'(g) P(g) Q(h - g) 
g=mna  

( h - g )  C m n .  

+ Y ~(g)  P(g) Q(h - g) 
(3) g=mna 

( h - g )  = m n .  

(m = 0, _+1, + 2 . . . ) .  (7) 

Here the indices g and h refer to the sampled values of 
(4) the elastic diffuse scattering along the systematics line. 
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Every nath such 'beam'  is a Bragg reflection. The 
physical interpretation of these four terms is as follows. 
The first describes the scattering of diffuse scattering 
incident on the nth slice into a new diffuse (non-Bragg) 
direction. The second describes the scattering of 
incident diffuse scattering into a new Bragg direction, 
while the third describes the scattering of incident 
Bragg beams into diffuse (non-Bragg) directions. The 
final partial sum is zero if the wanted beam h is not a 
Bragg reflection (h 4: mna) while the second and third 
terms are zero where h denotes a Bragg reflection. 
Since the number of diffuse 'beams'  far exceeds the 
number of Bragg reflections in all practical cases, the 
partial sum with the largest number of terms in any 
calculation is the first. This is also the smallest, since 
it represents the sum of products of small numbers. The 
effect of neglecting this term is indicated in Fig. 1 for a 
particular defect. This shows the elastic diffuse 
scattering expected along the [022] systematics line in 
an aluminium foil due to an undissociated edge dis- 
location with Burgers vector ½[110]. The foil normal 
and incident-beam direction is [111] and the crystal 
potential has been projected in the [ 1 i2] direction. The 
dislocation core structure is obtained by the method 
of CotteriU & D o y a m a  (1966) (their 'elasto-atomic' 
model) and is not expected to be accurate; however, 
small displacements of core atoms have little effect on 
the diffuse intensity distribution (but a large effect 
on the high-resolution image). Two-dimensional calcu- 
lations based on more sophisticated core-structure 

- - 4  j k._ 
ooo llo 2~o 3~o 

Fig. 1. Computed elastic diffuse scattering along the [2201 syste- 
matics line due to the array of dislocations shown in Fig. 2. 
On the scale of this diagram it is not possible to distinguish 
the result of the calculation which includes diffuse-diffuse terms 
from that which omits these terms. The height of the Bragg 
peaks (not shown) depends on the area of specimen illuminated. 
With an illuminated area of 80 A 2 the angular half width of 
the 220 reflection is 1.5 mrad at 100 kV. In this symmetrical 
zone-axis orientation (incident electron beam coincident with the 
]111] crystal direction) the diffuse scattering is symmetrical 
about the origin. 

models are in preparation. The neglect of diffuse- 
diffuse scattering terms is seen to have negligible effect 
on the calculated intensities. The line broadening seen 
is similar to that observed in X-ray diffraction, which, 
in the kinematic approximation, is proportional to the 
variance of the strain-field distribution function. 

The saving in computing time resulting from the 
neglect of these terms can be estimated as follows. The 
total number of terms in (1) for N beams (including 
diffuse 'beams')  and all possible values of h is 

S N = ( 3 N  2+ 1)/4 (Nodd) ,  

while the number of terms in the second, third and 
fourth partial sum of (7) (for all h) is 

3n~ - 4nn + 1 
SBO = n B + (2n a -- 1), 

4 

where n~ is the number of Bragg reflections. Here N = 
(n 8 - l)n a + 1. The fractional reduction in computing 
time if only these terms are included is 1 - F where 

F = Sno/S  N. 

For a typical calculation, n n = 17, n a = 40 and N = 
641 giving F = 0.05. Thus, the time taken to perform 
the convolution of (1) is reduced by 95% if diffuse- 
diffuse scattering terms are excluded from the 
calculation. In practice this is easily done using modulo 
arithmetic. By use of the relation between the multi- 
slice, Darwin and Matrix theories (Johnson, 1968) an 
equivalent approximation can be developed for these 
theories. 

The effect of the neglect of these terms on image 
synthesis has also been investigated. Images formed in 
bright field from the elastic diffuse scattering were 
barely affected by the neglect of the double-diffuse 
scattering terms, the variation in image intensity being 
less than 1% for a wide range of orientations and 
simulated experimental conditions. Under conditions of 
limited resolution, these images resemble the con- 
ventional metallurgical diffraction-contrast images. 

, L ° 

t° h 

Fig. 2. The periodic array of dislocations used in calculations. The 
crystal thickness t = 85 /~, the dislocation depth t o = 35 ,/k and 
the distance between dislocations x = 85 A. The incident-beam 
direction is indicated at C. A line of zero strain exists at the 
superlattice boundary along A B. 
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An important problem in defect-image simulation 
concerns the range of the defect strain field. For a 
displacement field which decays inversely with 
distance from the defect a discontinuity in the slope 
of the crystal potential is introduced at the artificial 
superlattice boundary whose magnitude may be a 
function of depth in the crystal. While this has only a 
small effect on simulated images of the defect at limited 
resolution, it may have a large effect on the calculated 
diffuse scattering. As shown in Fig. 2, this problem has 
been overcome in the present calculations by the 
application of periodic boundary conditions to the 
strain field. Thus, the calculations show the images and 
diffuse scattering which would result from a periodic 
array of dislocations. 

Since the strains from adjacent dislocations exa;tly 
cancel along A B, this procedure produces a super- 
lattice whose size is independent of depth in the crystal. 

3. Microdiffraction 

For calculations of microdiffraction patterns in 
scanning transmission electron microscopy (STEM) 
under 'critical' illumination it is necessary to consider 
the form of the wavefield incident on the specimen. At 
one extreme of approximation this may be taken equal 
to the normalized complex impulse response of the 
probe-forming (objective) lens. The first slice in (1) then 
contains the Fourier coefficients ~0(g) of this function, 
proportional to 

¢ff0(g) = H(g)  exp[( in/2)(Cs23g 4 + 2Af2g2)] (8) 

for an objective lens at defocus A f  with spherical aber- 
ration constant C S. Here A f  is taken positive if a plane 
conjugate to the electron source falls on the source side 
of the specimen. H(g)  is a pupil function describing the 

~oc 

w,o ,H  

Fig. 3. Width of a coherent scanning-microscope probe as a 
function of focus setting. The negative focus defect refers to a 
lens weakened from the Gaussian focus condition where the 
source and specimen planes are conjugate. An electron source of 
negligible dimensions is assumed. For C s < 2 mm and an 
objective aperture semiangle 0ap = 0-002 rad the probe size is 
controlled by the focus defect Af  alone if IAf[ > 5000 ,/~ and is 
symmetrical with respect to Af For IAfl < 5000/k  the curve is 
drawn for 0~p = 0.002 rad and Cs = 1.5 mm. The energy spread 
of the electron beam has been neglected. Accelerating voltage 
100 kV. 

objective lens aperture. Equation (8) is a good approxi- 
mation if the lateral coherence width X e in the exit 
pupil of the objective lens exceeds the diameter d of the 
exit pupil. This is commonly taken to be the objective 
aperture, so that we require very approximately 

2 
d < X c where X e - 2nO~ (9) 

for a coherent probe at the specimen. Here 0 s is the 
semiangle subtended by the focused scan spot (strictly 
the geometrical source image) at the objective lens 
aperture. This angle depends both on the demagnifi- 
cation of the probe-forming lens" and on the electron- 
source size. Equation (9) is satisfied under some STEM 
operating conditions; if it is not, partially coherent 
calculations must be carried out in which diffracted 
intensities are summed for each point on the electron 
source. An experimental method for determining the 
degree of coherence across an illuminating aperture 
has been described by Dowell & Goodman (1973). 

In order to use the method of periodic continuation 
to approximate diffraction by a single (non-periodic) 
electron source it is important that the incident wave- 
function at the specimen falls to negligible amplitude at 
the superlattice boundary. The width of the probe is a 
function of A f ,  C s and the objective aperture size for a 
diffraction-limited or aberration-limited probe. At large 
defocus or small aperture size these parameters may 
then be more important than the range of the defect 
strain field in determining the size of the artificial 
superlattice needed in calculations. Fig. 3 shows the 
width of the impulse response of an electron lens with 
Cs = 1.5 mm as a function of defocus. For most of the 
curve the impulse response is aberration limited and 
independent of the aperture size used if this is greater 
than 2 mrad. The width is taken as the distance 
between points on the specimen for which the probe 
intensity has fallen to 5% of its maximum value and 
gives an approximate indication of the size of artificial 
superlattice needed to simulate microdiffraction 
patterns under specified conditions of focus, spherical 
aberration and objective aperture size. The physical 
mechanism of diffraction by a coherent diffraction- 
limited focused probe has been discussed by Cowley & 
Jap (1976). Detailed calculations have also been made 
based on the method described above, which show the 
two-dimensional intensity distribution in the coherent 
convergent-beam microdiffraction pattern from the 
core of an edge dislocation in iron (Spence, 1977). 

4. Conclusions 

The development of quantitative methods for structure 
analysis by electron diffraction and imaging depends 
on our ability to compute the expected images and 
diffraction patterns from trial structures. With con- 
ventional computing methods an inordinate amount of 
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computing time is required for these calculations for 
non-periodic specimens if dynamical  scattering and all 
electron optical parameters are included. The approxi- 
mations outlined above make possible the simulation of 
these images and diffraction patterns within reasonable 
computing times. They therefore allow the possibility of 
least-squares refinement between computed images of 
trial structures and experimental many-beam images 
of defects. 

I am grateful to Dr M. O'Keefe and Professor J. M. 
Cowley for useful discussions in connection with this 
work. 
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Lattice fringes corresponding to (00.3) spacings of the 126R polytype of SiC have been obtained in the 
electron microscope. A number of 10.l reflections were allowed to pass through the objective aperture to 
obtain the lattice fringes showing a periodicity of - 105 ,~ (one third of the c parameter of the hexagonal cell) 
and each unit-cell block is subdivided into smaller blocks corresponding to the spacings of 6H, 15R, 21R etc. 
The stacking sequence of these blocks has been used to work out the detailed structure of the 126R polytype. 
It has been suggested that the lattice resolution technique in conjunction with X-ray diffraction is likely to 
prove a useful method for determining difficult polytypic structures. 

Introduction 

There are a number of substances like SiC, ZnS, CdI 2 
etc. which are known to crystallize in many unique 
periodicities and crystal structures. SiC polytypes are 
characterized by the number of Si-C double layers and 
their stacking sequence in the unit cell. Out of the 
various polytypes, 6H is the most commonly occurring 
structure followed by 15R and 4H in order of 
frequency of occurrence. A unique feature of the high- 
period polytypes of SiC is that their unit cells are built 

up by stackings of the unit cells of more common 
structures of SiC like 6H, 15R, 4H etc. For example the 
structure of the 39H polytype of SiC expressed in 
Zhdanov notation is (33) 2 32(33) 2 (32) 2 which clearly 
shows that its unit cell consists of four unit cells of 6H 
and three unit cells of 15R stacked in a sequence 
represented by the sequence of 33 and 32 in this symbol 
(Azuma, Ohta & Tomita, 1963). 

When a high-period unit cell is dominantly built up 
of units of one small-period structure, its structure 
determination becomes comparatively simple. However 


